Morphological-Edge Detection Approach for the Human Iris Segmentation

Neda Ahmadi


In the new millennium, technology has become more interesting issues and it has salient progress. Therefore, iris recognition systems attract many attention not only because of its huge applications such as security but also due to its importance in our today’s life. Even though, a number of researches have been done in this field; due to the large number of demands from every places like banks, airports, hospitals, market places and so on, it deserves more considerations. In this paper, a new segmentation method is performed in order to segment an exact part of the eyes (e.g., iris area). Then, for extracting the top and bottom texture, calculating the texture images, local entropy of grayscale image is utilized. After that, Otsu’s method is applied for globalizing image threshold. Finally, Haar wavelet transform is applied for feature extraction step. We use CASIA-Iris V3 database for our experimental results.


Iris recognition, Acquisition, Segmentation, Biometrics, Morphological operators

Full Text:



Abdullah, M. A., Dlay, S. S., Woo, W. L., & Chambers, J. A. (2016). Robust iris segmentation method based on a new active contour force with a noncircular normalization. IEEE transactions on systems, man, and cybernetics: Systems, 47(12), 3128-3141.

Ahmadi, N., & Akbarizadeh, G. (2015). Iris recognition system based on canny and LoG edge detection methods. Journal of Soft Computing and Decision Support Systems, 2(4), 26-30.

Ahmadi, N., & Akbarizadeh, G. (2016). A review of iris recognition based on biometric technologies. Transylvanian Rev, 24(4), 151-163.

Ahmadi, N., & Akbarizadeh, G. (2017). Hybrid robust iris recognition approach using iris image pre-processing, two-dimensional gabor features and multi-layer perceptron neural network/PSO. Iet Biometrics, 7(2), 153-162.

Ahmadi, N., & Akbarizadeh, G. (2018). Iris tissue recognition based on GLDM feature extraction and hybrid MLPNN-ICA classifier. Neural Computing and Applications, 1-15.

Ahmadi, N., & Nilashi, M. (2018). Iris texture recognition based on multilevel 2-D Haar wavelet decomposition and Hamming distance approach. Journal of Soft Computing and Decision Support Systems, 5(3), 16-20.

Alvarez-Betancourt, Y., & Garcia-Silvente, M. (2016). A keypoints-based feature extraction method for iris recognition under variable image quality conditions. Knowledge-Based Systems, 92, 169-182.

Belcher, C., & Du, Y. (2009). Region-based SIFT approach to iris recognition. Optics and Lasers in Engineering, 47(1), 139-147.

Cappelli, R., Ferrara, M., & Maltoni, D. (2015). Large-scale fingerprint identification on GPU. Information Sciences, 306, 1-20.

Chen, J., Shen, F., Chen, D. Z., & Flynn, P. J. (2016). Iris recognition based on human-interpretable features. IEEE Transactions on Information Forensics and Security, 11(7), 1476-1485.

De Marsico, M., Nappi, M., Riccio, D., & Wechsler, H. (2015). Mobile iris challenge evaluation (MICHE)-I, biometric iris dataset and protocols. Pattern Recognition Letters, 57, 17-23.

De Marsico, M., Petrosino, A., & Ricciardi, S. (2016). Iris recognition through machine learning techniques: A survey. Pattern Recognition Letters, 82, 106-115.

de Mira, J., Neto, H. V., Neves, E. B., & Schneider, F. K. (2015). Biometric-oriented iris identification based on mathematical morphology. Journal of Signal Processing Systems, 80(2), 181-195.

Elhoseny, M., Elkhateb, A., Sahlol, A., & Hassanien, A. E. (2018). Multimodal biometric personal identification and verification. In Advances in Soft Computing and Machine Learning in Image Processing (pp. 249-276). Springer, Cham.

Fairhurst, M., & Erbilek, M. (2011). Analysis of physical ageing effects in iris biometrics. IET Computer Vision, 5(6), 358-366.

Hollingsworth, K., Bowyer, K. W., Lagree, S., Fenker, S. P., & Flynn, P. J. (2011). Genetically identical irises have texture similarity that is not detected by iris biometrics. Computer Vision and Image Understanding, 115(11), 1493-1502.

Jalilian, E., & Uhl, A. (2017). Iris segmentation using fully convolutional encoder–decoder networks. In Deep Learning for Biometrics (pp. 133-155). Springer, Cham.

Jeong, D. S., Hwang, J. W., Kang, B. J., Park, K. R., Won, C. S., Park, D. K., & Kim, J. (2010). A new iris segmentation method for non-ideal iris images. Image and vision computing, 28(2), 254-260.

Jillela, R. R., & Ross, A. (2015). Segmenting iris images in the visible spectrum with applications in mobile biometrics. Pattern Recognition Letters, 57, 4-16.

Kang, J. S. (2010). Mobile iris recognition systems: An emerging biometric technology. Procedia Computer Science, 1(1), 475-484.

Luengo-Oroz, M. A., Faure, E., & Angulo, J. (2010). Robust iris segmentation on uncalibrated noisy images using mathematical morphology. Image and Vision Computing, 28(2), 278-284.

Mulleti, S., & Seelamantula, C. S. (2015). Ellipse fitting using the finite rate of innovation sampling principle. IEEE Transactions on Image Processing, 25(3), 1451-1464.

Niinuma, K., Park, U., & Jain, A. K. (2010). Soft biometric traits for continuous user authentication. IEEE Transactions on information forensics and security, 5(4), 771-780.

Nilashi, M., Ahani, A., Esfahani, M.D., Yadegaridehkordi, E., Samad, S., Ibrahim, O., Sharef, N.M. and Akbari, E., (2019b). Preference learning for eco-friendly hotels recommendation: A multi-criteria collaborative filtering approach. Journal of Cleaner Production, 215, 767-783.

Nilashi, M., Ahmadi, H., Shahmoradi, L., Ibrahim, O., & Akbari, E. (2019c). A predictive method for hepatitis disease diagnosis using ensembles of neuro-fuzzy technique. Journal of infection and public health, 12(1), 13-20.

Nilashi, M., bin Ibrahim, O., Ahmadi, H., & Shahmoradi, L. (2017a). An analytical method for diseases prediction using machine learning techniques. Computers & Chemical Engineering, 106, 212-223.

Nilashi, M., bin Ibrahim, O., Ithnin, N., & Sarmin, N. H. (2015). A multi-criteria collaborative filtering recommender system for the tourism domain using Expectation Maximization (EM) and PCA–ANFIS. Electronic Commerce Research and Applications, 14(6), 542-562.

Nilashi, M., Ibrahim, O., Ahmadi, H., & Shahmoradi, L. (2017b). A knowledge-based system for breast cancer classification using fuzzy logic method. Telematics and Informatics, 34(4), 133-144.

Nilashi, M., Ibrahim, O., Samad, S., Ahmadi, H., Shahmoradi, L., & Akbari, E. (2019a). An analytical method for measuring the Parkinson’s disease progression: A case on a Parkinson’s telemonitoring dataset. Measurement, 136, 545-557.

Nilashi, M., Ibrahim, O., Yadegaridehkordi, E., Samad, S., Akbari, E., & Alizadeh, A. (2018). Travelers decision making using online review in social network sites: A case on TripAdvisor. Journal of computational science, 28, 168-179.

Othman, N., Dorizzi, B., & Garcia-Salicetti, S. (2016). OSIRIS: An open source iris recognition software. Pattern Recognition Letters, 82, 124-131.

Othman, Z., Abdullah, A., Kasmin, F., & Ahmad, S. S. S. (2019). Effect of Supervised Region of Interest Against Edge Detection Method for Iris Localisation. In Intelligent and Interactive Computing (pp. 249-263). Springer, Singapore.

Park, U., & Jain, A. K. (2010). Face matching and retrieval using soft biometrics. IEEE Transactions on Information Forensics and Security, 5(3), 406-415.

Perera, L. P., Oliveira, P., & Soares, C. G. (2015). System identification of vessel steering with unstructured uncertainties by persistent excitation maneuvers. IEEE Journal of Oceanic Engineering, 41(3), 515-528.

Phillips, P. J., Bowyer, K. W., & Flynn, P. J. (2007). Comments on the CASIA version 1.0 iris data set. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(10), 1869-1870.

Pillai, J. K., Patel, V. M., Chellappa, R., & Ratha, N. K. (2011). Secure and robust iris recognition using random projections and sparse representations. IEEE transactions on pattern analysis and machine intelligence, 33(9), 1877-1893.

Proença, H. (2014). Iris recognition: What is beyond bit fragility?. IEEE Transactions on Information Forensics and Security, 10(2), 321-332.

Pundlik, S. J., Woodard, D. L., & Birchfield, S. T. (2008, June). Non-ideal iris segmentation using graph cuts. In 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 1-6). IEEE.

Raffei, A. F. M., Asmuni, H., Hassan, R., & Othman, R. M. (2015). A low lighting or contrast ratio visible iris recognition using iso-contrast limited adaptive histogram equalization. Knowledge-Based Systems, 74, 40-48.

Raghavendra, R., & Busch, C. (2015). Robust scheme for iris presentation attack detection using multiscale binarized statistical image features. IEEE Transactions on Information Forensics and Security, 10(4), 703-715.

Rakshit, S., & Monro, D. M. (2007). An evaluation of image sampling and compression for human iris recognition. IEEE Transactions on Information Forensics and Security, 2(3), 605-612.

Reid, D. A., Nixon, M. S., & Stevenage, S. V. (2013). Soft biometrics; human identification using comparative descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(6), 1216-1228.

Ricanek, K., Savvides, M., Woodard, D. L., & Dozier, G. (2010). Unconstrained biometric identification: Emerging technologies. Computer, 43(2), 56-62.

Solomatin, I. A., Matveev, I. A., & Novik, V. P. (2018). Locating the visible part of the iris with a texture classifier with a support set. Automation and Remote Control, 79(3), 492-505.

Tapia, J. E., Perez, C. A., & Bowyer, K. W. (2016). Gender classification from the same iris code used for recognition. IEEE Transactions on Information Forensics and Security, 11(8), 1760-1770.

Umer, S., Dhara, B. C., & Chanda, B. (2015). Iris recognition using multiscale morphologic features. Pattern Recognition Letters, 65, 67-74.

Vincent, L. (1994). Morphological area openings and closings for grey-scale images. In Shape in Picture (pp. 197-208). Springer, Berlin, Heidelberg.

Wan, H. L., Li, Z. C., Qiao, J. P., & Li, B. S. (2013). Non-ideal iris segmentation using anisotropic diffusion. IET Image Processing, 7(2), 111-120.

Yadegaridehkordi, E., Hourmand, M., Nilashi, M., Shuib, L., Ahani, A., & Ibrahim, O. (2018). Influence of big data adoption on manufacturing companies' performance: An integrated DEMATEL-ANFIS approach. Technological Forecasting and Social Change, 137, 199-210.

Yang, L., Yang, G., Yin, Y., & Xi, X. (2014). Exploring soft biometric trait with finger vein recognition. Neurocomputing, 135, 218-228.

Zhu, L. Q., & Zhang, S. Y. (2010). Multimodal biometric identification system based on finger geometry, knuckle print and palm print. Pattern Recognition Letters, 31(12), 1641-1649.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2014 Penerbit UTM Press. Universiti Teknologi Malaysia. All rights reserved.

Mailing Address: Penerbit UTM Press, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.