A Hybrid Intelligent Approach for Image Segmentation and Feature Extraction Using Fuzzy Clustering, Lattice Boltzmann and GLDM Techniques
Abstract
In this paper, novel Image Segmentation (IS) and feature extraction approaches based on Fuzzy Clustering (FC) and Lattice Boltzmann (LB) methods for segmentation step and Grey Level Difference Method (GLDM) method for feature extraction step are proposed. From the experimental results, the performance of our proposed method superior in terms of effectiveness and speed.
Keywords
References
Ahmadi, N. (2019a). Intelligent Approaches towards Fuzzy Segmentation and Fuzzy Edge Detection. Journal of Soft Computing and Decision Support Systems, 6(6), 9-13.
Ahmadi, N. (2019b). Morphological-Edge Detection Approach for the Human Iris Segmentation. Journal of Soft Computing and Decision Support Systems, 6(4), 15-19.
Ahmadi, N., & Akbarizadeh, G. (2015). Iris recognition system based on canny and LoG edge detection methods. Journal of Soft Computing and Decision Support Systems, 2(4), 26-30.
Ahmadi, N., & Akbarizadeh, G. (2016). A review of iris recognition based on biometric technologies. Transylvanian Rev, 24(4), 151-163.
Ahmadi, N., & Akbarizadeh, G. (2017). Hybrid robust iris recognition approach using iris image pre-processing, two-dimensional gabor features and multi-layer perceptron neural network/PSO. Iet Biometrics, 7(2), 153-162.
Ahmadi, N., & Akbarizadeh, G. (2018). Iris tissue recognition based on GLDM feature extraction and hybrid MLPNN-ICA classifier. Neural Computing and Applications, 1-15.
Ahmadi, N., & Nilashi, M. (2018). Iris texture recognition based on multilevel 2-D Haar wavelet decomposition and Hamming distance approach. Journal of Soft Computing and Decision Support Systems, 5(3), 16-20.
Ahmadi, N., Nilashi, M., Samad, S., Rashid, T. A., & Ahmadi, H. (2019). An intelligent method for iris recognition using supervised machine learning techniques. Optics & Laser Technology, 120, 105701.
AlZu’bi, S., Shehab, M., Al-Ayyoub, M., Jararweh, Y., & Gupta, B. (2018). Parallel implementation for 3d medical volume fuzzy segmentation. Pattern Recognition Letters.
Balla-Arabé, S., Gao, X., & Wang, B. (2013). A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method. IEEE transactions on cybernetics, 43(3), 910-920.
Chen, C., L., Papandreou, G., Kokkinos, I., . . . A. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848.
Chen, L., Chen, C., Lu, & M. (2011). A multiple-kernel fuzzy c-means algorithm for image segmentation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(5), 1263-1274.
D'Urso, P., De Giovanni, L., & Massari, R. (2018). Robust fuzzy clustering of multivariate time trajectories. International Journal of Approximate Reasoning, 99, 12-38.
D’urso, P., & Massari, R. (2019). Fuzzy clustering of mixed data. Information Sciences, 505, 513-534.
De Albuquerque Araujo, A. (1985). Sum of absolute grey level differences: an edge-preserving smoothing approach. Electronics Letters, 21(25), 1219-1220.
Elhamifar, E., & Vidal, R. (2013). Sparse subspace clustering: Algorithm, theory, and applications. IEEE transactions on pattern analysis and machine intelligence, 35(11), 2765-2781.
Gu, Z., Cheng, J., Fu, H., . . . J. (2019). CE-Net: context encoder network for 2D medical image segmentation. IEEE transactions on medical imaging, 38(10), 2281-2292.
Haworth, D. C. (2010). Progress in probability density function methods for turbulent reacting flows. Progress in Energy and Combustion Science, 36(2), 168-259.
Moussaoui, M. A., Jami, M., Mezrhab, A., & Naji, H. (2009). Lattice Boltzmann simulation of convective heat transfer from heated blocks in a horizontal channel. Numerical Heat Transfer, Part A: Applications, 56(5), 422-443.
Naidu, M., Kumar, P. R., & Chiranjeevi, K. (2018). Shannon and fuzzy entropy based evolutionary image thresholding for image segmentation. Alexandria engineering journal, 57(3), 1643-1655.
Nilashi, M., Samad, S., Ahmadi, N., Ahani, A., Abumalloh, R. A., Asadi, S., . . . Yadegaridehkordi, E. (2020). Neuromarketing: A Review of Research and Implications for Marketing. Journal of Soft Computing and Decision Support Systems, 7(2), 23-31.
Pereira, S., Pinto, A., Alves, V., & Silva, C. A. (2016). Brain tumor segmentation using convolutional neural networks in MRI images. IEEE transactions on medical imaging, 35(5), 1240-1251.
Pham, T. X., Siarry, P., & Oulhadj, H. (2018). Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation. Applied Soft Computing, 65, 230-242.
Shi, J., Lei, Y., Wu, J., & Jeon, G. (2019). Uncertain active contour model based on rough and fuzzy sets for auroral oval segmentation. Information Sciences, 492, 72-103.
Sun, C., & Munn, L. L. (2005). Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis. Biophysical journal, 88(3), 1635-1645.
Tang, H., Huang, G., Ling, F., Qiu, S., Meng, L., & Qin, Z. (2019). Lattice Boltzmann Simulation of Aqueous Humor Dynamics Based on Anterior Segment Optical Coherence Tomography Images. Paper presented at the 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI).
Weszka, J. (1976). DYER, CR, and ROSENFELD, A. 1976. A comparative study of texture measures for terrain classification. IEEE Transactions on Systems, Man, and Cybernetics SMC-6 (4), 269-285.
Zhou, J., Lai, Z., Miao, D., Gao, C., & & Yue, X. (2020). Multigranulation rough-fuzzy clustering based on shadowed sets. Information Sciences, 507, 553-573.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.