A Predictive Method for Mesothelioma Disease Classification Using Naïve Bayes Classifier

Mehrbakhsh Nilashi, Morteza Zamani Roudbaraki, Mohammadreza Farahmand


Malignant Mesothelioma (MM) is a rare but highly aggressive tumour. The aim of this study is to improve the classification accuracy of MM disease by developing an intelligence system using machine learning techniques. Our method is developed through clustering and classification approaches. Accordingly, we use Expectation Maximization (EM) and Naive Bayes (NB) for clustering and classification tasks, respectively. Experimental results on a malignant pleural mesothelioma disease dataset show that proposed method remarkably improves the accuracy of MM disease prediction. The hybrid intelligent system can assist medical practitioners in the healthcare practice as a decision support system.


Malignant Mesothelioma disease diagnosis, Clustering, Naïve Bayes, Machine learning

Full Text:

Abstract PDF


Ahmadi Far, A. (2016). A New Method for Breast Cancer Diagnosis Using Neural Network and Genetic Algorithms. Journal of Soft Computing and Decision Support Systems, 3(5), 47-49.

Akben, S. B., Tuncel, D., & Alkan, A. (2016). Classification of multi-channel EEG signals for migraine detection. Biomedical Research, 27(3).

Babu G. S., & Suresh S. (2013). Parkinson’s disease prediction using gene expression–A projection based learning meta-cognitive neural classifier approach. Expert Systems with Applications, 40(5), 1519-1529.

Bermejo, P., Gámez, J. A., & Puerta, J. M. (2014). Speeding up incremental wrapper feature subset selection with Naive Bayes classifier. Knowledge-Based Systems, 55, 140-147.

Bhardwaj, A., & Tiwari, A. (2015). Breast cancer diagnosis using genetically optimized neural network model. Expert Systems with Applications, 42(10), 4611-4620.

Chen, C. H. (2014). A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection. Applied Soft Computing, 20, 4-14.

Cheung, M., Talarchek, J., Schindeler, K., Saraiva, E., Penney, L. S., Ludman, M., & Testa, J. R. (2013). Further evidence for germline BAP1 mutations predisposing to melanoma and malignant mesothelioma. Cancer genetics, 206(5), 206-210.

Crown, W. H. (2015). Potential application of machine learning in health outcomes research and some statistical cautions. Value in Health, 18(2), 137-140.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the royal statistical society. Series B (methodological), 1-38.

Er, O., Tanrikulu, A. Ç., & Abakay, A. (2015). Use of artificial intelligence techniques for diagnosis of malignant pleural mesothelioma. Dicle Tıp Dergisi, 42(1).

Gemba, K., Fujimoto, N., Aoe, K., Kato, K., Takeshima, Y., Inai, K., & Kishimoto, T. (2013). Treatment and survival analyses of malignant mesothelioma in Japan. Acta Oncologica, 52(4), 803-808.

Hariharan M., Polat K., & Sindhu R. (2014). A new hybrid intelligent system for accurate detection of Parkinson's disease. Computer methods and programs in biomedicine, 113(3), 904-913.

Hruschka, E. R., & Ebecken, N. F. (2006). Extracting rules from multilayer perceptrons in classification problems: a clustering-based approach.Neurocomputing, 70(1), 384-397.

Iacono, M. L., Monica, V., Righi, L., Grosso, F., Libener, R., Vatrano, S., ... & Papotti, M. (2015). Targeted next-generation sequencing of cancer genes in advanced stage malignant pleural mesothelioma: a retrospective study. Journal of thoracic oncology, 10(3), 492-499.

Jung, Y. G., Kang, M. S., & Heo, J. (2014). Clustering performance comparison using K-means and expectation maximization algorithms. Biotechnology & Biotechnological Equipment, 28(sup1), S44-S48.

Karabatak, M. (2015). A new classifier for breast cancer detection based on Naïve Bayesian. Measurement, 72, 32-36.

Lanphear, B. P., & Buncher, C. R. (1992). Latent period for malignant mesothelioma of occupational origin. Journal of Occupational and Environmental Medicine, 34(7), 718-721.

Li, T., Deng, Q., Li, Y., Zhang, J., Sun, Y., & Gu, X. (2015). Data mining based on statistical analysis of Chinese Traditional Setting-up exercise on healthy undergraduate students. Biomedical Research, 26(1).

Maghooli, K., Langarizadeh, M., Shahmoradi, L., Habibi-koolaee, M., Jebraeily, M., & Bouraghi, H. (2016). Differential Diagnosis of Erythmato-Squamous Diseases Using Classification and Regression Tree. Acta Informatica Medica, 24(5), 338.

Marcano-Cedeño, A., Quintanilla-Domínguez, J., & Andina, D. (2011). WBCD breast cancer database classification applying artificial metaplasticity neural network. Expert Systems with Applications, 38(8), 9573-9579.

Marinaccio, A., Binazzi, A., Cauzillo, G., Cavone, D., De Zotti, R., Ferrante, P., ... & Merler, E. (2007). Analysis of latency time and its determinants in asbestos related malignant mesothelioma cases of the Italian register.European journal of cancer, 43(18), 2722-2728.

Moore, B. C. (1981). Principal component analysis in linear systems: Controllability, observability, and model reduction. Automatic Control, IEEE Transactions on, 26(1), 17-32.

Nilashi, M. (2016e). An Overview of Data Mining Techniques in Recommender Systems. Journal of Soft Computing and Decision Support Systems, 3(6), 16-44.

Nilashi, M., Ahmadi, H., Shahmoradi, L., Mardani, A., Ibrahim, O., & Yadegaridehkordi, E. (2017e). Knowledge Discovery and Diseases Prediction: A Comparative Study of Machine Learning Techniques. Journal of Soft Computing and Decision Support Systems, 4(5), 8-16.

Nilashi, M., Ahmadi, H., Shahmoradi, L., Salahshour, M., & Ibrahim, O. (2017c). A Soft Computing Method for Mesothelioma Disease Classification. Journal of Soft Computing and Decision Support Systems, 4(1), 16-18.

Nilashi, M., bin Ibrahim, O., Ahmadi, H., & Shahmoradi, L. (2017b). An Analytical Method for Diseases Prediction Using Machine Learning Techniques. Computers & Chemical Engineering, 106, 212-223

Nilashi, M., Dalvi, M., Ibrahim, O., Fard, K. B., Mardani, A., & Zakuan, N. (2017f). A Soft Computing Method for the Prediction of Energy Performance of Residential Buildings. Measurement, 109, 268-280.

Nilashi, M., Esfahani, M. D., Roudbaraki, M. Z., Ramayah, T., & Ibrahim, O. (2016d). A multi-criteria collaborative filtering recommender system using clustering and regression techniques. Journal of Soft Computing and Decision Support Systems, 3(5), 24-30.

Nilashi, M., Ibrahim, O. B., Mardani, A., Ahani, A., & Jusoh, A. (2016b). A soft computing approach for diabetes disease classification. Health Informatics Journal, 1460458216675500.

Nilashi, M., Ibrahim, O., & Ahani, A. (2016a). Accuracy Improvement for Predicting Parkinson’s Disease Progression. Scientific Reports, 6.

Nilashi, M., Ibrahim, O., Ahmadi, H., & Shahmoradi, L. (2017a). A Knowledge-Based System for Breast Cancer Classification Using Fuzzy Logic Method. Telematics and Informatics. 3(5), 133–144

Nilashi, M., Ibrahim, O., Ahmadi, H., Shahmoradi, L., & Farahmand, M. (2018). A hybrid intelligent system for the prediction of Parkinson's Disease progression using machine learning techniques. Biocybernetics and Biomedical Engineering, 38(1), 1-15.

Nilashi, M., Ibrahim, O., Dalvi, M., Ahmadi, H., & Shahmoradi, L. (2017d). Accuracy Improvement for Diabetes Disease Classification: A Case on a Public Medical Dataset. Fuzzy Information and Engineering, 9(3), 345-357.

Nilashi, M., Salahshour, M., Ibrahim, O., Mardani, A., Esfahani, M. D., & Zakuan, N. (2016c). A New Method for Collaborative Filtering Recommender Systems: The Case of Yahoo! Movies and TripAdvisor Datasets. Journal of Soft Computing and Decision Support Systems, 3(5), 44-46.

Pelleg, D., & Moore, A. W. (2000, June). X-means: Extending K-means with Efficient Estimation of the Number of Clusters. In ICML (pp. 727-734).

Polat, K. (2012). Classification of Parkinson's disease using feature weighting method on the basis of fuzzy C-means clustering. International Journal of Systems Science, 43(4), 597-609.

Sekido, Y. (2008). Molecular biology of malignant mesothelioma.Environmental health and preventive medicine, 13(2), 65-70.

Shahmoradi, L., Langarizadeh, M., Pourmand, G., & Borhani, A. (2016). Comparing Three Data Mining Methods to Predict Kidney Transplant Survival. Acta Informatica Medica, 24(5), 242.

Sheikhpour, R., Sarram, M. A., & Sheikhpour, R. (2015). Particle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancer. Applied Soft Computing.

Spugnini, E. P., Bosari, S., Citro, G., Lorenzon, I., Cognetti, F., & Baldi, A. (2006). Human malignant mesothelioma: molecular mechanisms of pathogenesis and progression. The international journal of biochemistry & cell biology, 38(12), 2000-2004.

Suzuki, Y. (1981). Pathology of human malignant mesothelioma. Semin Oncol, 8(3), 268-282.

Testa, J. R., Cheung, M., Pei, J., Below, J. E., Tan, Y., Sementino, E., ... & Hesdorffer, M. (2011). Germline BAP1 mutations predispose to malignant mesothelioma. Nature genetics, 43(10), 1022-1025.

Wu, C. J. (1983). On the convergence properties of the EM algorithm. The Annals of statistics, 95-103.

Yu, W., Liu, T., Valdez, R., Gwinn, M., & Khoury, M. J. (2010). Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Medical Informatics and Decision Making, 10(1), 16.

Zervos, M. D., Bizekis, C., & Pass, H. I. (2008). Malignant mesothelioma 2008. Current opinion in pulmonary medicine, 14(4), 303-309.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.