Support Vector Regression for Data-Driven Decision Making
Abstract
Support Vector Regression (SVR) is a robust machine learning technique adapted from the Support Vector Machine (SVM) algorithm, specifically designed for predicting continuous outcomes. Unlike traditional regression models that aim to minimize error directly, SVR introduces the concept of an ?-insensitive margin, allowing flexibility in prediction within a controlled tolerance. This mathematical innovation makes SVR particularly suitable for business environments where data is often noisy and complex. In this paper, we provide a brief but comprehensive overview of SVR, outlining its theoretical foundation, optimization conditions, and core mathematical formulations. The paper also highlights SVR’s capacity to model nonlinear relationships through kernel functions, offering an advanced solution for data-driven decision-making. The effectiveness of SVR is demonstrated through its application in future business data analysis.
Keywords
Full Text:
AbstractReferences
M. Khan, X. Wu, X. Xu, and W. Dou, "Big data challenges and opportunities in the hype of Industry 4.0." pp. 1-6.
M. Nilashi, O. Keng Boon, G. Tan, B. Lin, and R. Abumalloh, “Critical data challenges in measuring the performance of sustainable development goals: Solutions and the role of big-data analytics,” Harvard Data Science Review, vol. 5, no. 3, pp. 1-36, 2023.
M. Zibarzani, R. A. Abumalloh, and M. Nilashi, “The impact of big data adoption on competitive advantage in achieving sustainable development goals: the moderating role of mimetic pressure,” Environment, Development and Sustainability, pp. 1-36, 2024.
E. Yadegaridehkordi, M. Hourmand, M. Nilashi, L. Shuib, A. Ahani, and O. Ibrahim, “Influence of big data adoption on manufacturing companies' performance: An integrated DEMATEL-ANFIS approach,” Technological forecasting and social change, vol. 137, pp. 199-210, 2018.
E. Yadegaridehkordi, M. Nilashi, L. Shuib, M. H. N. B. M. Nasir, S. Asadi, S. Samad, and N. F. Awang, “The impact of big data on firm performance in hotel industry,” Electronic Commerce Research and Applications, vol. 40, pp. 100921, 2020.
M. Nilashi, A. M. Baabdullah, R. A. Abumalloh, K.-B. Ooi, G. W.-H. Tan, M. Giannakis, and Y. K. Dwivedi, “How can big data and predictive analytics impact the performance and competitive advantage of the food waste and recycling industry?,” Annals of Operations Research, vol. 348, no. 3, pp. 1649-1690, 2025.
M. Nilashi, B. Minaei-Bidgoli, M. Alrizq, A. Alghamdi, A. A. Alsulami, S. Samad, and S. Mohd, “An analytical approach for big social data analysis for customer decision-making in eco-friendly hotels,” Expert Systems with Applications, vol. 186, pp. 115722, 2021.
S. Vudugula, S. K. Chebrolu, M. Bhuiyan, and F. Z. Rozony, “Integrating artificial intelligence in strategic business decision-making: A systematic review of predictive models,” International Journal of Scientific Interdisciplinary Research, vol. 4, no. 1, pp. 01-26, 2023.
T. M. McCarthy, and S. L. Golicic, “Implementing collaborative forecasting to improve supply chain performance,” International Journal of Physical Distribution & Logistics Management, vol. 32, no. 6, pp. 431-454, 2002.
M. Nilashi, R. A. Abumalloh, A. Almulihi, M. Alrizq, A. Alghamdi, M. Y. Ismail, A. Bashar, W. A. Zogaan, and S. Asadi, “Big social data analysis for impact of food quality on travelers’ satisfaction in eco-friendly hotels,” ICT Express, vol. 9, no. 2, pp. 182-188, 2023.
M. Nilashi, P. F. Rupani, M. M. Rupani, H. Kamyab, W. Shao, H. Ahmadi, T. A. Rashid, and N. Aljojo, “Measuring sustainability through ecological sustainability and human sustainability: A machine learning approach,” Journal of Cleaner Production, vol. 240, pp. 118162, 2019.
M. Nilashi, S. Samad, A. Ahani, H. Ahmadi, E. Alsolami, M. Mahmoud, H. D. Majeed, and A. A. Alarood, “Travellers decision making through preferences learning: A case on Malaysian spa hotels in TripAdvisor,” Computers & Industrial Engineering, vol. 158, pp. 107348, 2021.
M. Awad, and R. Khanna, "Support vector regression," Efficient learning machines: Theories, concepts, and applications for engineers and system designers, pp. 67-80: Springer, 2015.
W. S. Noble, “What is a support vector machine?,” Nature biotechnology, vol. 24, no. 12, pp. 1565-1567, 2006.
M. Nilashi, H. Ahmadi, A. A. Manaf, T. A. Rashid, S. Samad, L. Shahmoradi, N. Aljojo, and E. Akbari, “Coronary heart disease diagnosis through self-organizing map and fuzzy support vector machine with incremental updates,” International Journal of Fuzzy Systems, vol. 22, no. 4, pp. 1376-1388, 2020.
M. Nilashi, K. Bagherifard, M. Rahmani, and V. Rafe, “A recommender system for tourism industry using cluster ensemble and prediction machine learning techniques,” Computers & industrial engineering, vol. 109, pp. 357-368, 2017.
M. Nilashi, D. Jannach, O. bin Ibrahim, and N. Ithnin, “Clustering-and regression-based multi-criteria collaborative filtering with incremental updates,” Information Sciences, vol. 293, pp. 235-250, 2015.
M. Nilashi, A. Fallahpour, K. Y. Wong, and F. Ghabban, “Customer satisfaction analysis and preference prediction in historic sites through electronic word of mouth,” Neural Computing and Applications, vol. 34, no. 16, pp. 13867-13881, 2022.
M. Nilashi, R. A. Abumalloh, S. Samad, B. Minaei-Bidgoli, H. H. Thi, O. A. Alghamdi, M. Y. Ismail, and H. Ahmadi, “The impact of multi-criteria ratings in social networking sites on the performance of online recommendation agents,” Telematics and Informatics, vol. 76, pp. 101919, 2023.
M. Nilashi, O. Ibrahim, H. Ahmadi, L. Shahmoradi, and M. Farahmand, “A hybrid intelligent system for the prediction of Parkinson's Disease progression using machine learning techniques,” Biocybernetics and Biomedical Engineering, vol. 38, no. 1, pp. 1-15, 2018.
M. Nilashi, R. A. Abumalloh, B. Minaei-Bidgoli, S. Samad, M. Yousoof Ismail, A. Alhargan, and W. Abdu Zogaan, “Predicting parkinson’s disease progression: Evaluation of ensemble methods in machine learning,” Journal of healthcare engineering, vol. 2022, no. 1, pp. 2793361, 2022.
Y. Sun, S. Ding, Z. Zhang, and W. Jia, “An improved grid search algorithm to optimize SVR for prediction,” Soft Computing, vol. 25, no. 7, pp. 5633-5644, 2021.
A. Ahani, M. Nilashi, O. Ibrahim, L. Sanzogni, and S. Weaven, “Market segmentation and travel choice prediction in Spa hotels through TripAdvisor’s online reviews,” International Journal of Hospitality Management, vol. 80, pp. 52-77, 2019.
A. Ahani, M. Nilashi, W. A. Zogaan, S. Samad, N. O. Aljehane, A. Alhargan, S. Mohd, H. Ahmadi, and L. Sanzogni, “Evaluating medical travelers’ satisfaction through online review analysis,” Journal of Hospitality and Tourism Management, vol. 48, pp. 519-537, 2021.
M. Nilashi, R. A. Abumalloh, H. Ahmadi, S. Samad, M. Alrizq, H. Abosaq, and A. Alghamdi, “The nexus between quality of customer relationship management systems and customers' satisfaction: Evidence from online customers’ reviews,” Heliyon, vol. 9, no. 11, 2023.
M. Nilashi, R. A. Abumalloh, A. Alghamdi, B. Minaei-Bidgoli, A. A. Alsulami, M. Thanoon, S. Asadi, and S. Samad, “What is the impact of service quality on customers’ satisfaction during COVID-19 outbreak? New findings from online reviews analysis,” Telematics and Informatics, vol. 64, pp. 101693, 2021.
M. Nilashi, R. A. Abumalloh, S. Samad, M. Alrizq, S. Alyami, and A. Alghamdi, “Analysis of customers' satisfaction with baby products: The moderating role of brand image,” Journal of Retailing and Consumer Services, vol. 73, pp. 103334, 2023.
M. Nilashi, R. A. Abumalloh, M. Zibarzani, S. Samad, W. A. Zogaan, M. Y. Ismail, S. Mohd, and N. A. M. Akib, “What factors influence students satisfaction in massive open online courses? Findings from user-generated content using educational data mining,” Education and Information Technologies, vol. 27, no. 7, pp. 9401-9435, 2022.
M. Nilashi, A. Ahani, M. D. Esfahani, E. Yadegaridehkordi, S. Samad, O. Ibrahim, N. M. Sharef, and E. Akbari, “Preference learning for eco-friendly hotels recommendation: A multi-criteria collaborative filtering approach,” Journal of Cleaner Production, vol. 215, pp. 767-783, 2019.
M. Nilashi, H. Ahmadi, G. Arji, K. O. Alsalem, S. Samad, F. Ghabban, A. O. Alzahrani, A. Ahani, and A. A. Alarood, “Big social data and customer decision making in vegetarian restaurants: A combined machine learning method,” Journal of Retailing and Consumer Services, vol. 62, pp. 102630, 2021.
M. Nilashi, R. Ali Abumalloh, H. Ahmadi, M. Alrizq, A. Alghamdi, O. A. Alghamdi, and S. Alyami, “A proposed method for quality evaluation of COVID-19 reusable face mask,” Measurement and Control, vol. 57, no. 6, pp. 828-840, 2024.
M. Nilashi, S. Asadi, B. Minaei-Bidgoli, R. A. Abumalloh, S. Samad, F. Ghabban, and A. Ahani, “Recommendation agents and information sharing through social media for coronavirus outbreak,” Telematics and Informatics, vol. 61, pp. 101597, 2021.
M. Nilashi, O. Ibrahim, E. Yadegaridehkordi, S. Samad, E. Akbari, and A. Alizadeh, “Travelers decision making using online review in social network sites: A case on TripAdvisor,” Journal of computational science, vol. 28, pp. 168-179, 2018.
M. Nilashi, D. Jannach, O. bin Ibrahim, M. D. Esfahani, and H. Ahmadi, “Recommendation quality, transparency, and website quality for trust-building in recommendation agents,” Electronic commerce research and applications, vol. 19, pp. 70-84, 2016.
M. Nilashi, A. Mardani, H. Liao, H. Ahmadi, A. A. Manaf, and W. Almukadi, “A hybrid method with TOPSIS and machine learning techniques for sustainable development of green hotels considering online reviews,” Sustainability, vol. 11, no. 21, pp. 6013, 2019.
M. Nilashi, B. Minaei-Bidgoli, A. Alghamdi, M. Alrizq, O. Alghamdi, F. K. Nayer, N. O. Aljehane, A. Khosravi, and S. Mohd, “Knowledge discovery for course choice decision in Massive Open Online Courses using machine learning approaches,” Expert Systems with Applications, vol. 199, pp. 117092, 2022.
M. Nilashi, S. Samad, A. Alghamdi, M. Y. Ismail, O. Alghamdi, S. S. Mehmood, S. Mohd, W. A. Zogaan, and A. Alhargan, “A new method for analysis of customers’ online review in medical tourism using fuzzy logic and text mining approaches,” International Journal of Information Technology & Decision Making, vol. 21, no. 06, pp. 1797-1820, 2022.
M. Nilashi, S. Samad, B. Minaei-Bidgoli, F. Ghabban, and E. Supriyanto?, “Online reviews analysis for customer segmentation through dimensionality reduction and deep learning techniques,” Arabian Journal for Science and Engineering, vol. 46, no. 9, pp. 8697-8709, 2021.
M. Nilashi, E. Yadegaridehkordi, O. Ibrahim, S. Samad, A. Ahani, and L. Sanzogni, “Analysis of travellers’ online reviews in social networking sites using fuzzy logic approach,” International Journal of Fuzzy Systems, vol. 21, no. 5, pp. 1367-1378, 2019.
E. Yadegaridehkordi, M. Nilashi, M. H. N. B. M. Nasir, S. Momtazi, S. Samad, E. Supriyanto, and F. Ghabban, “Customers segmentation in eco-friendly hotels using multi-criteria and machine learning techniques,” Technology in Society, vol. 65, pp. 101528, 2021.
M. Zibarzani, R. A. Abumalloh, M. Nilashi, S. Samad, O. Alghamdi, F. K. Nayer, M. Y. Ismail, S. Mohd, and N. A. M. Akib, “Customer satisfaction with Restaurants Service Quality during COVID-19 outbreak: A two-stage methodology,” Technology in Society, vol. 70, pp. 101977, 2022.
Z. Ramedani, M. Omid, A. Keyhani, S. Shamshirband, and B. Khoshnevisan, “Potential of radial basis function based support vector regression for global solar radiation prediction,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 1005-1011, 2014.
K. Choy, and C. W. Chan, “Modelling of river discharges and rainfall using radial basis function networks based on support vector regression,” International Journal of Systems Science, vol. 34, no. 14-15, pp. 763-773, 2003.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

