From Data to Decisions: Leveraging ANFIS for Adaptive Rule-Based Systems
Abstract
The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid intelligent system that integrates the learning capabilities of neural networks with the transparent reasoning structure of fuzzy logic. Designed for continuous function approximation and decision-making tasks, ANFIS uses a data-driven approach to construct fuzzy if-then rules and adjust membership function parameters through learning algorithms such as backpropagation or hybrid optimization. This fusion allows ANFIS to effectively model complex, nonlinear systems while maintaining interpretability. By translating numerical data into linguistically interpretable rules, ANFIS offers a flexible framework capable of adapting to evolving data patterns. This paper explores the foundational structure of ANFIS, detailing its layered architecture, rule generation process, and learning mechanisms. The discussion highlights its suitability for data-driven environments where interpretability, adaptability, and predictive accuracy are essential in building intelligent decision support systems.
Keywords
Full Text:
AbstractReferences
B. Foroughi, P. V. Nhan, M. Iranmanesh, M. Ghobakhloo, M. Nilashi, and E. Yadegaridehkordi, “Determinants of intention to use autonomous vehicles: Findings from PLS-SEM and ANFIS,” Journal of Retailing and Consumer Services, vol. 70, pp. 103158, 2023.
M. Iranmanesh, M. Ghobakhloo, B. Foroughi, M. Nilashi, and E. Yadegaridehkordi, “Factors influencing attitude and intention to use autonomous vehicles in Vietnam: findings from PLS-SEM and ANFIS,” Information Technology & People, vol. 37, no. 6, pp. 2223-2246, 2023.
A. Kheirandish, E. Akbari, M. Nilashi, and M. Dahari, “Using ANFIS technique for PEM fuel cell electric bicycle prediction model,” International Journal of Environmental Science and Technology, vol. 16, no. 11, pp. 7319-7326, 2019.
M. Nilashi, R. A. Abumalloh, H. Ahmadi, S. Samad, S. Alyami, A. Alghamdi, M. Alrizq, and S. Y. M. Yusuf, “Accuracy analysis of Type-2 fuzzy system in predicting parkinson’s disease using biomedical voice measures,” International Journal of Fuzzy Systems, vol. 26, no. 4, pp. 1261-1284, 2024.
M. Nilashi, R. A. Abumalloh, M. Alrizq, A. Almulihi, O. Alghamdi, M. Farooque, S. Samad, S. Mohd, and H. Ahmadi, “A hybrid method to solve data sparsity in travel recommendation agents using fuzzy logic approach,” Mathematical Problems in Engineering, vol. 2022, no. 1, pp. 7372849, 2022.
M. Nilashi, R. A. Abumalloh, M. Alrizq, A. Almulihi, O. Alghamdi, M. Farooque, S. Samad, S. Mohd, and H. Ahmadi, “Research Article A Hybrid Method to Solve Data Sparsity in Travel Recommendation Agents Using Fuzzy Logic Approach,” 2022.
M. Nilashi, R. A. Abumalloh, S. Y. M. Yusuf, H. H. Thi, M. Alsulami, H. Abosaq, S. Alyami, and A. Alghamdi, “Early diagnosis of Parkinson’s disease: A combined method using deep learning and neuro-fuzzy techniques,” Computational biology and chemistry, vol. 102, pp. 107788, 2023.
M. Nilashi, A. Ahani, M. D. Esfahani, E. Yadegaridehkordi, S. Samad, O. Ibrahim, N. M. Sharef, and E. Akbari, “Preference learning for eco-friendly hotels recommendation: A multi-criteria collaborative filtering approach,” Journal of Cleaner Production, vol. 215, pp. 767-783, 2019.
M. Nilashi, H. Ahmadi, L. Shahmoradi, O. Ibrahim, and E. Akbari, “A predictive method for hepatitis disease diagnosis using ensembles of neuro-fuzzy technique,” Journal of infection and public health, vol. 12, no. 1, pp. 13-20, 2019.
E. Akbari, Z. Buntat, E. Shahraki, A. Zeinalinezhad, and M. Nilashi, “ANFIS modeling for bacteria detection based on GNR biosensor,” Journal of Chemical Technology & Biotechnology, vol. 91, no. 6, pp. 1728-1736, 2016.
M. Nilashi, O. bin Ibrahim, and N. Ithnin, “Hybrid recommendation approaches for multi-criteria collaborative filtering,” Expert Systems with Applications, vol. 41, no. 8, pp. 3879-3900, 2014.
M. Nilashi, O. bin Ibrahim, and N. Ithnin, “Multi-criteria collaborative filtering with high accuracy using higher order singular value decomposition and Neuro-Fuzzy system,” Knowledge-Based Systems, vol. 60, pp. 82-101, 2014.
M. Nilashi, O. bin Ibrahim, N. Ithnin, and N. H. Sarmin, “A multi-criteria collaborative filtering recommender system for the tourism domain using Expectation Maximization (EM) and PCA–ANFIS,” Electronic Commerce Research and Applications, vol. 14, no. 6, pp. 542-562, 2015.
M. Nilashi, F. Cavallaro, A. Mardani, E. K. Zavadskas, S. Samad, and O. Ibrahim, “Measuring country sustainability performance using ensembles of neuro-fuzzy technique,” Sustainability, vol. 10, no. 8, pp. 2707, 2018.
M. Nilashi, M. Dalvi-Esfahani, O. Ibrahim, K. Bagherifard, A. Mardani, and N. Zakuan, “A soft computing method for the prediction of energy performance of residential buildings,” Measurement, vol. 109, pp. 268-280, 2017.
M. Nilashi, O. Ibrahim, S. Samad, H. Ahmadi, L. Shahmoradi, and E. Akbari, “An analytical method for measuring the Parkinson’s disease progression: A case on a Parkinson’s telemonitoring dataset,” Measurement, vol. 136, pp. 545-557, 2019.
M. Nilashi, O. B. Ibrahim, N. Ithnin, and R. Zakaria, “A multi-criteria recommendation system using dimensionality reduction and Neuro-Fuzzy techniques,” Soft Computing, vol. 19, no. 11, pp. 3173-3207, 2015.
M. Nilashi, E. Yadegaridehkordi, O. Ibrahim, S. Samad, A. Ahani, and L. Sanzogni, “Analysis of travellers’ online reviews in social networking sites using fuzzy logic approach,” International Journal of Fuzzy Systems, vol. 21, no. 5, pp. 1367-1378, 2019.
E. Yadegaridehkordi, M. Nilashi, M. H. N. B. M. Nasir, and O. Ibrahim, “Predicting determinants of hotel success and development using Structural Equation Modelling (SEM)-ANFIS method,” Tourism Management, vol. 66, pp. 364-386, 2018.
J.-S. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE transactions on systems, man, and cybernetics, vol. 23, no. 3, pp. 665-685, 1993.
H. Ahmadi, M. Gholamzadeh, L. Shahmoradi, M. Nilashi, and P. Rashvand, “Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review,” Computer Methods and Programs in Biomedicine, vol. 161, pp. 145-172, 2018.
G. Arji, H. Ahmadi, M. Nilashi, T. A. Rashid, O. H. Ahmed, N. Aljojo, and A. Zainol, “Fuzzy logic approach for infectious disease diagnosis: A methodical evaluation, literature and classification,” Biocybernetics and biomedical engineering, vol. 39, no. 4, pp. 937-955, 2019.
S. Asadi, M. Ghobakhloo, M. Nilashi, M. Iranmanesh, B. Foroughi, and P. Maroufkhani, “A hybrid approach based on fuzzy Logic and Dematel to evaluate industry 4.0 adoption in Smes,” Available at SSRN 4331127, 2023.
M. Nilashi, O. Ibrahim, H. Ahmadi, and L. Shahmoradi, “A knowledge-based system for breast cancer classification using fuzzy logic method,” Telematics and Informatics, vol. 34, no. 4, pp. 133-144, 2017.
A. Ahani, M. Nilashi, O. Ibrahim, L. Sanzogni, and S. Weaven, “Market segmentation and travel choice prediction in Spa hotels through TripAdvisor’s online reviews,” International Journal of Hospitality Management, vol. 80, pp. 52-77, 2019.
A. Ahani, M. Nilashi, W. A. Zogaan, S. Samad, N. O. Aljehane, A. Alhargan, S. Mohd, H. Ahmadi, and L. Sanzogni, “Evaluating medical travelers’ satisfaction through online review analysis,” Journal of Hospitality and Tourism Management, vol. 48, pp. 519-537, 2021.
M. Nilashi, R. A. Abumalloh, H. Ahmadi, S. Samad, M. Alrizq, H. Abosaq, and A. Alghamdi, “The nexus between quality of customer relationship management systems and customers' satisfaction: Evidence from online customers’ reviews,” Heliyon, vol. 9, no. 11, 2023.
M. Nilashi, R. A. Abumalloh, A. Alghamdi, B. Minaei-Bidgoli, A. A. Alsulami, M. Thanoon, S. Asadi, and S. Samad, “What is the impact of service quality on customers’ satisfaction during COVID-19 outbreak? New findings from online reviews analysis,” Telematics and Informatics, vol. 64, pp. 101693, 2021.
M. Nilashi, R. A. Abumalloh, S. Samad, M. Alrizq, S. Alyami, and A. Alghamdi, “Analysis of customers' satisfaction with baby products: The moderating role of brand image,” Journal of Retailing and Consumer Services, vol. 73, pp. 103334, 2023.
M. Nilashi, R. A. Abumalloh, M. Zibarzani, S. Samad, W. A. Zogaan, M. Y. Ismail, S. Mohd, and N. A. M. Akib, “What factors influence students satisfaction in massive open online courses? Findings from user-generated content using educational data mining,” Education and Information Technologies, vol. 27, no. 7, pp. 9401-9435, 2022.
M. Nilashi, H. Ahmadi, G. Arji, K. O. Alsalem, S. Samad, F. Ghabban, A. O. Alzahrani, A. Ahani, and A. A. Alarood, “Big social data and customer decision making in vegetarian restaurants: A combined machine learning method,” Journal of Retailing and Consumer Services, vol. 62, pp. 102630, 2021.
M. Nilashi, R. Ali Abumalloh, H. Ahmadi, M. Alrizq, A. Alghamdi, O. A. Alghamdi, and S. Alyami, “A proposed method for quality evaluation of COVID-19 reusable face mask,” Measurement and Control, vol. 57, no. 6, pp. 828-840, 2024.
M. Nilashi, S. Asadi, B. Minaei-Bidgoli, R. A. Abumalloh, S. Samad, F. Ghabban, and A. Ahani, “Recommendation agents and information sharing through social media for coronavirus outbreak,” Telematics and Informatics, vol. 61, pp. 101597, 2021.
M. Nilashi, A. Fallahpour, K. Y. Wong, and F. Ghabban, “Customer satisfaction analysis and preference prediction in historic sites through electronic word of mouth,” Neural Computing and Applications, vol. 34, no. 16, pp. 13867-13881, 2022.
M. Nilashi, O. Ibrahim, E. Yadegaridehkordi, S. Samad, E. Akbari, and A. Alizadeh, “Travelers decision making using online review in social network sites: A case on TripAdvisor,” Journal of computational science, vol. 28, pp. 168-179, 2018.
M. Nilashi, D. Jannach, O. bin Ibrahim, M. D. Esfahani, and H. Ahmadi, “Recommendation quality, transparency, and website quality for trust-building in recommendation agents,” Electronic commerce research and applications, vol. 19, pp. 70-84, 2016.
M. Nilashi, A. Mardani, H. Liao, H. Ahmadi, A. A. Manaf, and W. Almukadi, “A hybrid method with TOPSIS and machine learning techniques for sustainable development of green hotels considering online reviews,” Sustainability, vol. 11, no. 21, pp. 6013, 2019.
M. Nilashi, B. Minaei-Bidgoli, A. Alghamdi, M. Alrizq, O. Alghamdi, F. K. Nayer, N. O. Aljehane, A. Khosravi, and S. Mohd, “Knowledge discovery for course choice decision in Massive Open Online Courses using machine learning approaches,” Expert Systems with Applications, vol. 199, pp. 117092, 2022.
M. Nilashi, B. Minaei-Bidgoli, M. Alrizq, A. Alghamdi, A. A. Alsulami, S. Samad, and S. Mohd, “An analytical approach for big social data analysis for customer decision-making in eco-friendly hotels,” Expert Systems with Applications, vol. 186, pp. 115722, 2021.
M. Nilashi, S. Samad, A. Alghamdi, M. Y. Ismail, O. Alghamdi, S. S. Mehmood, S. Mohd, W. A. Zogaan, and A. Alhargan, “A new method for analysis of customers’ online review in medical tourism using fuzzy logic and text mining approaches,” International Journal of Information Technology & Decision Making, vol. 21, no. 06, pp. 1797-1820, 2022.
M. Nilashi, S. Samad, B. Minaei-Bidgoli, F. Ghabban, and E. Supriyanto?, “Online reviews analysis for customer segmentation through dimensionality reduction and deep learning techniques,” Arabian Journal for Science and Engineering, vol. 46, no. 9, pp. 8697-8709, 2021.
E. Yadegaridehkordi, M. Nilashi, M. H. N. B. M. Nasir, S. Momtazi, S. Samad, E. Supriyanto, and F. Ghabban, “Customers segmentation in eco-friendly hotels using multi-criteria and machine learning techniques,” Technology in Society, vol. 65, pp. 101528, 2021.
M. Zibarzani, R. A. Abumalloh, M. Nilashi, S. Samad, O. Alghamdi, F. K. Nayer, M. Y. Ismail, S. Mohd, and N. A. M. Akib, “Customer satisfaction with Restaurants Service Quality during COVID-19 outbreak: A two-stage methodology,” Technology in Society, vol. 70, pp. 101977, 2022.
R. A. Abumalloh, S. Asadi, M. Nilashi, B. Minaei-Bidgoli, F. K. Nayer, S. Samad, S. Mohd, and O. Ibrahim, “The impact of coronavirus pandemic (COVID-19) on education: The role of virtual and remote laboratories in education,” Technology in Society, vol. 67, pp. 101728, 2021.
R. A. Abumalloh, M. Nilashi, K. B. Ooi, G. Wei-Han, T.-H. Cham, Y. K. Dwivedi, and L. Hughes, “The adoption of metaverse in the retail industry and its impact on sustainable competitive advantage: moderating impact of sustainability commitment,” Annals of Operations Research, vol. 342, no. 1, pp. 5-46, 2024.
M. Al-Emran, A. A. AlQudah, G. A. Abbasi, M. A. Al-Sharafi, and M. Iranmanesh, “Determinants of using AI-based chatbots for knowledge sharing: evidence from PLS-SEM and fuzzy sets (fsQCA),” IEEE Transactions on Engineering Management, vol. 71, pp. 4985-4999, 2023.
S. Asadi, M. Nilashi, S. Samad, R. Abdullah, M. Mahmoud, M. H. Alkinani, and E. Yadegaridehkordi, “Factors impacting consumers’ intention toward adoption of electric vehicles in Malaysia,” Journal of Cleaner Production, vol. 282, pp. 124474, 2021.
B. Foroughi, M. Iranmanesh, M. Nilashi, M. Ghobakhloo, S. Asadi, and M. Khoshkam, “Determinants of followers' purchase intentions toward brands endorsed by social media influencers: Findings from PLS and fsQCA,” Journal of Consumer Behaviour, vol. 23, no. 2, pp. 888-914, 2024.
B. Foroughi, E. Yadegaridehkordi, M. Iranmanesh, T. Sukcharoen, M. Ghobakhlo, and M. Nilashi, “Determinants of continuance intention to use food delivery apps: findings from PLS and fsQCA,” International journal of contemporary hospitality management, vol. 36, no. 4, pp. 1235-1261, 2023.
M. Nilashi, R. A. Abumalloh, A. Almulihi, M. Alrizq, A. Alghamdi, M. Y. Ismail, A. Bashar, W. A. Zogaan, and S. Asadi, “Big social data analysis for impact of food quality on travelers’ satisfaction in eco-friendly hotels,” ICT Express, vol. 9, no. 2, pp. 182-188, 2023.
M. Nilashi, R. A. Abumalloh, M. Alrizq, A. Alghamdi, S. Samad, A. Almulihi, M. M. Althobaiti, M. Y. Ismail, and S. Mohd, “What is the impact of eWOM in social network sites on travel decision-making during the COVID-19 outbreak? A two-stage methodology,” Telematics and Informatics, vol. 69, pp. 101795, 2022.
M. Nilashi, A. M. Baabdullah, R. A. Abumalloh, K.-B. Ooi, G. W.-H. Tan, M. Giannakis, and Y. K. Dwivedi, “How can big data and predictive analytics impact the performance and competitive advantage of the food waste and recycling industry?,” Annals of Operations Research, vol. 348, no. 3, pp. 1649-1690, 2025.
P. Saeidi, S. P. Saeidi, S. Sofian, S. P. Saeidi, M. Nilashi, and A. Mardani, “The impact of enterprise risk management on competitive advantage by moderating role of information technology,” Computer standards & interfaces, vol. 63, pp. 67-82, 2019.
S. Samad, M. Nilashi, A. Almulihi, M. Alrizq, A. Alghamdi, S. Mohd, H. Ahmadi, and S. N. F. S. Azhar, “Green Supply Chain Management practices and impact on firm performance: The moderating effect of collaborative capability,” Technology in Society, vol. 67, pp. 101766, 2021.
S. Samad, M. Nilashi, and O. Ibrahim, “The impact of social networking sites on students’ social wellbeing and academic performance,” Education and Information Technologies, vol. 24, no. 3, pp. 2081-2094, 2019.
E. Yadegaridehkordi, M. Nilashi, L. Shuib, M. H. N. B. M. Nasir, S. Asadi, S. Samad, and N. F. Awang, “The impact of big data on firm performance in hotel industry,” Electronic Commerce Research and Applications, vol. 40, pp. 100921, 2020.
S. Asadi, M. Nilashi, R. A. Abumalloh, S. Samad, A. Ahani, F. Ghabban, S. Y. M. Yusuf, and E. Supriyanto, “Evaluation of factors to respond to the COVID-19 pandemic using DEMATEL and fuzzy rule-based techniques,” International Journal of Fuzzy Systems, vol. 24, no. 1, pp. 27-43, 2022.
M. Dalvi-Esfahani, A. Niknafs, D. J. Kuss, M. Nilashi, and S. Afrough, “Social media addiction: Applying the DEMATEL approach,” Telematics and Informatics, vol. 43, pp. 101250, 2019.
E. Yadegaridehkordi, M. Hourmand, M. Nilashi, L. Shuib, A. Ahani, and O. Ibrahim, “Influence of big data adoption on manufacturing companies' performance: An integrated DEMATEL-ANFIS approach,” Technological forecasting and social change, vol. 137, pp. 199-210, 2018.
H. Ahmadi, M. Nilashi, and O. Ibrahim, “Organizational decision to adopt hospital information system: An empirical investigation in the case of Malaysian public hospitals,” International journal of medical informatics, vol. 84, no. 3, pp. 166-188, 2015.
A. A. Esfahani, H. Ahmadi, M. Nilashi, M. Alizadeh, A. Bashiri, M. A. Farajzadeh, L. Shahmoradi, M. Nobakht, and H. R. Rasouli, “An evaluation model for the implementation of hospital information system in public hospitals using multi-criteria-decision-making (MCDM) approaches,” International Journal of Engineering and Technology (UAE), vol. 7, no. 1, pp. 1-18, 2018.
A. Mardani, M. Nilashi, N. Zakuan, N. Loganathan, S. Soheilirad, M. Z. M. Saman, and O. Ibrahim, “A systematic review and meta-Analysis of SWARA and WASPAS methods: Theory and applications with recent fuzzy developments,” Applied soft computing, vol. 57, pp. 265-292, 2017.
M. Nilashi, R. A. Abumalloh, H. Ahmadi, M. Alrizq, H. Abosaq, A. Alghamdi, M. Farooque, and S. S. Mahmood, “Using DEMATEL, clustering, and fuzzy logic for supply chain evaluation of electric vehicles: A SCOR model,” AIMS Environmental Science, vol. 11, no. 2, 2024.
M. Nilashi, H. Ahmadi, A. Ahani, R. Ravangard, and O. bin Ibrahim, “Determining the importance of hospital information system adoption factors using fuzzy analytic network process (ANP),” Technological forecasting and social change, vol. 111, pp. 244-264, 2016.
M. Nilashi, S. Samad, A. A. Manaf, H. Ahmadi, T. A. Rashid, A. Munshi, W. Almukadi, O. Ibrahim, and O. H. Ahmed, “Factors influencing medical tourism adoption in Malaysia: A DEMATEL-Fuzzy TOPSIS approach,” Computers & Industrial Engineering, vol. 137, pp. 106005, 2019.
M. Nilashi, R. Zakaria, O. Ibrahim, M. Z. A. Majid, R. M. Zin, and M. Farahmand, “MCPCM: a DEMATEL-ANP-based multi-criteria decision-making approach to evaluate the critical success factors in construction projects,” Arabian Journal for Science and Engineering, vol. 40, no. 2, pp. 343-361, 2015.
M. Safaei, E. A. Sundararajan, S. Asadi, M. Nilashi, M. J. Ab Aziz, M. Saravanan, M. Abdelhaq, and R. Alsaqour, “A hybrid MCDM approach based on fuzzy-logic and DEMATEL to evaluate adult obesity,” International Journal of Environmental Research and Public Health, vol. 19, no. 23, pp. 15432, 2022.
E. Yadegaridehkordi, M. Nilashi, M. H. Nizam Bin Md Nasir, N. Safie Bin Mohd Satar, and S. Momtazi, “Evaluating COVID-19 infection prevention measures in Malaysia: A fuzzy DEMATEL approach,” Digital health, vol. 9, pp. 20552076231211670, 2023.
A. Jamarani, S. Haddadi, R. Sarvizadeh, M. Haghi Kashani, M. Akbari, and S. Moradi, “Big data and predictive analytics: A systematic review of applications,” Artificial Intelligence Review, vol. 57, no. 7, pp. 176, 2024.
M. Nilashi, R. A. Abumalloh, and M. Zibarzani, “Big social data analysis for quality of MOOC courses: the moderating role of practical examples,” Quality & Quantity, pp. 1-33, 2025.
M. Nilashi, O. Keng Boon, G. Tan, B. Lin, and R. Abumalloh, “Critical data challenges in measuring the performance of sustainable development goals: Solutions and the role of big-data analytics,” Harvard Data Science Review, vol. 5, no. 3, pp. 1-36, 2023.
M. Zibarzani, R. A. Abumalloh, and M. Nilashi, “The impact of big data adoption on competitive advantage in achieving sustainable development goals: the moderating role of mimetic pressure,” Environment, Development and Sustainability, pp. 1-36, 2024.
N. Ahmadi, M. Nilashi, B. Minaei-Bidgoli, M. Farooque, S. Samad, N. O. Aljehane, W. A. Zogaan, and H. Ahmadi, “Eye State Identification Utilizing EEG Signals: A Combined Method Using Self?Organizing Map and Deep Belief Network,” Scientific Programming, vol. 2022, no. 1, pp. 4439189, 2022.
M. Nilashi, R. A. Abumalloh, B. Minaei-Bidgoli, S. Samad, M. Yousoof Ismail, A. Alhargan, and W. Abdu Zogaan, “Predicting parkinson’s disease progression: Evaluation of ensemble methods in machine learning,” Journal of healthcare engineering, vol. 2022, no. 1, pp. 2793361, 2022.
M. Nilashi, R. A. Abumalloh, S. Samad, B. Minaei-Bidgoli, H. H. Thi, O. A. Alghamdi, M. Y. Ismail, and H. Ahmadi, “The impact of multi-criteria ratings in social networking sites on the performance of online recommendation agents,” Telematics and Informatics, vol. 76, pp. 101919, 2023.
A. Alghamdi, M. Nilashi, R. A. Abumalloh, H. Ahmadi, M. Alrizq, and S. Alyami, “Analysis of social data for accuracy improvement of collaborative filtering in MOOCs using text mining and deep learning techniques,” Discover Computing, vol. 28, no. 1, pp. 1-21, 2025.
M. Farokhi, M. Vahid, M. Nilashi, and O. bin Ibrahim, “A Multi-Criteria Recommender System for Tourism Using Fuzzy Approach,” Journal of Soft Computing & Decision Support Systems, vol. 3, no. 4, 2016.
A. Mardani, H. Liao, M. Nilashi, M. Alrasheedi, and F. Cavallaro, “A multi-stage method to predict carbon dioxide emissions using dimensionality reduction, clustering, and machine learning techniques,” Journal of Cleaner Production, vol. 275, pp. 122942, 2020.
M. Nilashi, R. A. Abumalloh, S. Alyami, A. Alghamdi, and M. Alrizq, “A combined method for diabetes mellitus diagnosis using deep learning, singular value decomposition, and self-organizing map approaches,” Diagnostics, vol. 13, no. 10, pp. 1821, 2023.
M. Nilashi, R. A. Abumalloh, S. Samad, M. Alrizq, S. Alyami, H. Abosaq, A. Alghamdi, and N. A. M. Akib, “Factors impacting customer purchase intention of smart home security systems: Social data analysis using machine learning techniques,” Technology in Society, vol. 71, pp. 102118, 2022.
M. Nilashi, M. Dalvi-Esfahani, M. Z. Roudbaraki, T. Ramayah, and O. Ibrahim, “A Multi-Criteria Collaborative Filtering Recommender System Using Clustering and Regression Techniques,” Journal of Soft Computing & Decision Support Systems, vol. 3, no. 5, 2016.
M. Nilashi, O. Ibrahim, M. Dalvi, H. Ahmadi, and L. Shahmoradi, “Accuracy improvement for diabetes disease classification: a case on a public medical dataset,” Fuzzy Information and Engineering, vol. 9, no. 3, pp. 345-357, 2017.
M. Nilashi, D. Jannach, O. bin Ibrahim, and N. Ithnin, “Clustering-and regression-based multi-criteria collaborative filtering with incremental updates,” Information Sciences, vol. 293, pp. 235-250, 2015.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

